Reactions of Dimethylaminodifluorophosphine Complexes of Nickel(0) with Boron Trifluoride

W. E. HILL and F. P. McCULLOUGH

Department of Chemistry, Auburn University, Auburn, Ala. 36830, U.S.A.

C. A. McAULIFFE

Department of Chemistry, University of Manchester, Institute of Science and Technology, Manchester M60 1QD, U.K.

Received December 15, 1978

The successful isolation of NiL(CO)₃ and NiL₃-(CO) ($L = Me_2NPF_2$) is reported. Boron trifluoride reacts with NiL₂(CO)₂ to yield NiL₂(CO)₂•nBF₃, where n = 1.44 at -128 °C and 1.11 at 2 °C, and with NiL₄ to yield NiL₄•nBF₃, where n = 2.6 at -100 °C, n = 1.78 at -3 °C and n = 1.24 at +20 °C. Nuclear magnetic resonance and infrared spectral data is presented which indicates that the BF₃ coordinates to the nitrogen of the coordinated Me₂NPF₂ ligands. Mass spectral data for the adducts has also been obtained.

Introduction

Among the more interesting of the trivalent phosphorus fluorides are the dialkyldiaminofluorophosphines. Such ligands offer two potential Lewis donor sites and indeed it has been demonstrated that Me_2 -NEF₂ (E = P, As) can bind to Lewis acids by either of the two donor sites, depending on the nature of the Lewis acid [1, 2].

Schmutzler [3] and Nixon and co-workers [4, 5] have prepared and studied the various dimethylaminodifluorophosphine complexes of Ni(0), but while the species NiL₄ and NiL₂(CO)₂ (L = Me₂-NPF₂) have been isolated and characterised well, the NiL(CO)₃ and NiL₃(CO) have only been obtained *in situ* and not been isolated. We here wish to report the isolation of these last two species and also the reactions of the NiL₄(CO)_{4-n} complexes with boron trifluoride.

Results and Discussion

Nickel tetracarbonyl and $(CH_3)_2NPF_2$ react regardless of the order of addition or stoichiometry to produce NiL₂(CO)₂. No matter how much L is added to Ni(CO)₄ only NiL₂(CO)₂ and (if enough L is added and the reaction heated) NiL₄ are formed, and

it is impossible by using stoichiometric control of L to produce directly NiL(CO)₃ or NiL₃(CO) [3]. If $NiL_2(CO)_2$ is stored for 4 to 8 weeks significant amounts (20 to 30%) of NiL(CO)₃ and NiL₃(CO) are formed as a mixture with the original NiL2- $(CO)_2$. This behaviour had been noticed by Nixon, Murray and Schmutzler [6] for $L = Me_2NPF_2$, Et_2 . NPF₂ and $C_5H_{10}NPF_2$ and by Clark [7] for L = PF₃. The rate of rearrangement for $L = PF_3$ is much faster [6] than for L = dialkylaminofluorophosphine. Clark [7] was able to separate Ni(PF₃)(CO)₂ and Ni(PF₃)₂-(CO)₂ and Ni(PF₃)₃(CO) by vapour phase chromatography, but attempts to separate and prove the independent existence of $NiL_3(CO)$ and $NiL(CO)_3$ where $L = Me_2NPF_2$ have been unsuccessful prior to this work [3, 6, 8–10]. Nixon and Schmutzler [6, 8] have attributed this observed rearrangement to a dissociative process to form CO or L where the rate of dissociation is much slower in the case of the dialkylaminofluorophosphines as compared to PF₃. However, since the rearrangement is observed also in vacuo and no free L or CO is observed by us it is unlikely that the reaction proceeds via the dissociative mechanism suggested by Nixon and Schmutzler. The NiL(CO)₃, NiL₂(CO)₂ and NiL₃(CO) are nicely separated by high pressure liquid chromatography which proves the independent existence of $NiL_3(CO)$ and $NiL(CO)_3$ as opposed to their existence as equilibrium species in solution which could not be isolated as independent species.

Our results from the n.m.r. measurements are similar to those reported by other workers [3, 11], *viz*: NiL₄($\delta_{\rm F}$ + 38.9, $\delta_{\rm P}$ - 167, J_{P-F} 1104, NiL₃(CO) ($\delta_{\rm F}$ + 41.6, J_{P-F} 1137), NiL(CO)₃ ($\delta_{\rm F}$ + 44.8, J_{P-F} 1157), NiL₂(CO)₂ ($\delta_{\rm F}$ + 43.3, $\delta_{\rm P}$ - 168.5, J_{P-F} 1150).

From the study done by Fleming and Parry [1] it is known the BF₃ will add to the nitrogen of $(CH_3)_2$ -NPF₂. When $(CH_3)_2$ NPF₂ displaces two CO ligands in Ni(CO)₄ to form NiL₂(CO)₂ the $(CH_3)_2$ NPF₂ has been shown by Schmutzler [3] to coordinate to the Ni through the phosphorus. There is now an extended π network from the nitrogen to the phosphorus $(2p\pi \rightarrow 3d\pi)$, backbonding from the Ni to the $P(3d\pi_{Ni} \rightarrow 3d\pi_P)$ and also backbonding from the Ni to the antibonding orbitals of CO. If BF₃ coordinates to the nitrogen of Ni(PF₂NMe₂)₂(CO)₂ this should affect the whole extended π network, and cause noticeable changes in several of the stretching frequencies of the complex.

The BF₃ uptake study described in the experimental section was done to determine how much BF₃, n, the NiL₂(CO)₂•nBF₃ adduct contained over a large temperature range (-128 to +3 °C). At -128 °C the excess BF₃ has a vapour pressure of about 45 torr and with this vapour pressure it is possible to condense off into a -178 °C trap all the uncomplexed BF₃. At -128 °C, n = 1.44, indicating that more than one species is present in the reaction product [*i.e.* NiL₂(CO)₂, NiL₂(CO)₂•nBF₃ (n = 1, 2)]. Uptake of BF₃ studies at temperatures lower than -128 °C could not be carried out since it would be impossible experimentally to remove the excess uncomplexed BF₃. At +2 °C the moles of BF₃ present in the reaction product is 1.11.

If the BF₃ coordinates through the oxygen of the CO in NiL₂(CO)₂ and not at all through the nitrogen of the L, minimal uptake of BF₃ by NiL₄ would be expected. If the BF₃ coordinates with both the N and O sites of NiL₂(CO)₂, a maximum value of n = 4 would result from the uptake study. For this reason, a BF₃ uptake study was performed with NiL₄. NiL₄ has four nitrogen and no carbonyl donor sites available for coordination to BF₃. At -100° C n = 2.6 for NiL₄ •nBF₃. This indicates that the nitrogen of L in NiL₄ readily takes up BF₃ and is thus likely that the nitrogen of L also takes up BF₃ in NiL₂(CO)₂. Therefore at -100° C there must be either/or NiL₄ •3BF₃ and NiL₄ •4BF present in the reaction mixture; of course, some NiL₄ •BF₃ and

TABLE I. Comparison of Major Assigned Infrared Bands.

NiL₄ • 2BF₃ could also be present. Again, as was the case with NiL₂(CO)₂ it was impossible to force the uptake of BF₃ to n = 4 by lowering the reaction warm-up temperature much lower than -100 °C since the vapour pressure of the excess uncomplexed BF₃ gets too low to allow easy removal of the excess BF₃. The reaction of BF₃ with either NiL₂(CO)₂ or NiL₄ was shown by mass balance and infrared to be totally reversible indicating that no rearrangement had taken place:

 $NiL_4 + nBF_3 \neq NiL_4 \cdot nBF_3$

 $NiL_2(CO)_2 + nBF_3 \neq NiL_2(CO)_2 \cdot nBF_3$

For neat NiL₂(CO)₂•nBF₃ with slight BF₃ overpressure the ¹⁹F n.m.r. shows two sets of gross doublets and a broad singlet. The first set of gross doublets has a chemical shift of +43.7 ppm and a P-F coupling constant of 1150 Hz due to the ligand that has no BF₃ coordinated to it and the second doublet with a shift of +45.8 ppm and P-F coupling constant of 1184 Hz due to the ligand with BF₃ coordinated to it. The very broad upfield singlet at +141.8 is assigned to BF₃ (probably due to overlapping peaks of coordinated and uncoordinated BF_3^*). The ³¹P spectrum shows two overlapping triplets, one triplet has $\delta_{\mathbf{P}}$ -168.5 ppm and $J_{\mathbf{P}-\mathbf{F}}$ = 1150 Hz due to the ligand without BF₃ and the second triplet has $\delta_{\mathbf{P}}$ -166.3 ppm and $J_{P-F} = 1184$ Hz. In comparing ¹⁹F nmr data of Cavell [11] for Me₂NPF₂ with the ¹⁹F nmr data of Fleming and Parry [1] for Me₂NPF₂. BF₃ there is an increase in $\delta_{\rm F}$ (shifts to higher field) and J_{P-F} when BF₃ coordinates to L. Also the ³¹P

Band Assignment	L ^a	NiL ₂ (CO) ₂	NiL ₂ (CO) ₂ •nBF ₃	NiL4	NiL4•nBF3
N-CH ₃ ν _s	2805	2810	2810 (dim.) ^b	2810	2810 (dim.) (almost absent)
$C-O \nu_s$ A ₁		2060	n = 1 2076 n = 2 2098		
$C-O = \nu_s$ B ₁		2009	c		
N–P–F ₂ ν_s	702	706	712 (br)	710	696 (br) ^d
P–F ^v a' ^v s	812 772	828 775	883 790	842 770	835 750
ΒΝ ν _s			610		580

^aL = Me₂NPF₂. ^bdim. = greatly diminished in intensity compared to 1185. ^cB₁ bands overlapping, broadened and B₁ region shifted to higher wave number. ^dbr = broadened.

^{*}A referee has also pointed out that it is possible that the broadness could be due to the fact that fluorine is attached to boron which has a quadrupole.

shift data show a decrease in δ_P when BF₃ coordinates to L. This same trend is noted for the coordination of BF₃ to NiL₂(CO)₂. Below 25 °C the NiL₂-(CO)₂•nBF₃ adduct begins to form solid particles in solution thereby decreasing the concentration of adduct in solution. Also at lower temperatures the solubility of $NiL_2(CO)_2 \cdot nBF_3$ in $NiL_2(CO)_2$ or CH_2Cl_2 is insufficient to run the ¹⁹F spectrum. Attempts to dissolve the solid adduct in acetone produced only $NiL_2(CO)_2$ and $(CH_3)_2C=O\cdot BF_3$. The NiL₄•nBF₃ adduct was insufficiently soluble in all solvents commonly used for ¹⁹F spectra. Attempts to dissolve the NiL₄ • nBF₃ in acetone produced a solution of NiL₄ and (CH₃)₂C=O·BF₃ indicating that the oxygen of acetone is a better Lewis base than the nitrogen of the complex toward the hard Lewis acid BF₃. If one adds BF₃ to a solution of either NiL₂-(CO)₂ or NiL₄ in CH₂Cl₂, solid BF₃ adduct product precipitates out without any detectable BF₃ adduct remaining in solution.

The major characteristic bands of the infrared spectra of Me₂NPF₂ (L), NiL₂(CO)₂, NiL₂(CO)₂. nBF₃, NiL₄ and NiL₄•nBF₃ are listed in Table I. The tentative assignments of the new compounds made in this study have been based on those made by other workers [1, 3, 7, 12, 13]. Braunholtz [13] has shown for a large number of compounds of the type N-CH₃ an absorption band of medium to strong intensity is present between 2760 and 2820 cm⁻ due to the symmetrical stretch of a methyl group attached to a nitrogen whose lone pair is not involved in coordination. The presence or absence of this band in the 2760-2820 cm⁻¹ range provides a valuable diagnostic test for this group. For L, NiL₂-(CO)₂ and NiL₄, the N-CH₃ ν_s band is present indicating the nitrogen lone pair is not coordinated. The band is greatly diminished in intensity in NiL₂- $(CO)_2 \cdot nBF_3$ and NiL₄ $\cdot nBF_3$ indicating that some of the nitrogen lone pairs of these two compounds are forming adducts with BF3 causing the band intensity to diminish. If n = 2 for NiL₂(CO)₂ • nBF₃ or n = 4 for NiL₄•nBF₃ the band would be expected to disappear completely. The band in the region $600-560 \text{ cm}^{-1}$ has been attributed to a B-N symmetrical stretch by using ¹⁰B and ¹¹B isotope studies [1]. Bands appear in this region for $NiL_2(CO)_2 \cdot BF_3$ and $NiL_4 \cdot$ nBF₃ giving further evidence for the existence of a B-N bond in these three compounds. The A₁ C-O symmetrical stretch for $NiL_2(CO)_2$ is at 2060 cm⁻¹. When BF_3 is added to $NiL_2(CO)_2$ two new A_1 bands appear at 2070 and 2098 cm⁻¹ tentatively assigned to NiL₂(CO)₂ \cdot nBF₃ where n = 1 and 2 respectively. The B₁ C-O stretching region undergoes a similar shift to higher frequency but these bands overlap making assignment impossible. The shift to higher frequency of the two new A1 bands indicates that as the BF₃ coordinates to the nitrogen of $NiL_2(CO)_2$, the nitrogen lone pair is no longer available to

TABLE II. Infrared Carbonyl Stretching Frequencies and Assignments for NiL_{4-n}(CO)_n (n = 1, 2, 3).

	ν_{C-O} cm ⁻¹	Assignment
NiL(CO)3	2102 m	
	2092 w, sh	$Ni(C^{13}O)(C^{12}O)_2L$
	2028s	E*
	1996 w, sh	Ni(C ¹³ O)(C ¹² O) ₂ L
NiL ₂ (CO) ₂	2060 s	A ₁
	2050 w, shoulder	$Ni(C^{13}O)(C^{12}O)L_2$
	2009 s	B ₁
	1975 w	Ni(C ¹³ O)(C ¹² O)L ₂
NiL ₂ (CO)	2018 s	Aı
J ()	1970 w	Ni(C ¹³ O)L ₃

s = strong; m = medium; w = weak; sh = shoulder.

*Has some E-band splitting due to low symetry of L.

undergo $2p \rightarrow 3d$ bonding with the empty d orbitals on phosphorus. This makes the phosphorus a better acceptor from the nickel which causes the nickel to donate more of its d electrons into the empty d orbitals on phosphorus at the expense of donating some of these electrons to the antibonding orbitals of the carbonyl. Since fewer electrons are now being donated to the antibonding orbitals of the carbonyl, the carbonyl bond order increases and this is reflected in the shift to higher A₁ carbonyl stretching frequencies for NiL₂(CO)₂•nBF₃.

The P-F stretching frequencies (v_a and v_s respectively) are shifted to higher frequency in going from L to L·BF₃. This indicates a strengthening of the P-F bond in L-BF₃. When BF₃ coordinates to the nitrogen, the nitrogen can no longer $2p\pi \rightarrow 3d\pi$ bond to the phosphorus. This causes the phosphorus to take a greater share of the electrons in the P-F bond which makes the bond stronger and more covalent which is reflected in the shift of the P-F stretching bands to higher frequency. The same trend is noted in going from NiL₂(CO)₂ to NiL₂(CO)₂ • nBF₃ which can be explained in the same terms (although the magnitude of the shift is slightly less for the NiL₂- $(CO)_2$ case compared to L). One sees an opposite trend in a shift to low frequencies for the P-F stretch in going from NiL₄ to NiL₄ • nBF₃. The reason for this is not clear. Perhaps this partly reflects a steric effect in NiL₄ which is not seen in NiL₂(CO)₂ or L.

Table II lists the infrared carbonyl stretching frequencies for NiL(CO)₃, NiL₂(CO)₂ and NiL₃(CO) and assignments are made by comparison with those of Loutelier and Bigorne [12] for the corresponding series of PF₃ compounds. By comparing the A₁ mode which is in all three, one sees a decrease in ν_{A_1} from NiL(CO)₃ to NiL₃(CO) indicating that as more Me₂NPF₂ replace CO, the coordinating phosphorus is a poorer π acceptor of electrons from Ni and consequently as poorer π acceptor L's are added, more

TABLE III. Mass Spectrum of NiL₂(CO)₂•nBF₃ (E.I. Mode).

m/e	Ion	Relative Intensity
476	$NiL_2(CO)_2 \cdot 2BF_3^+$	16
408	NiL 2(CO) 2 BF3	6
380	NiL $_2(CO) \cdot BF_3^+$	12
340	NiL $_2(CO)_2^+$	5
312	$NiL_2(CO)^+$	2
284	NiL ⁺	2
199	NiL(CO) ⁺	3
181	L·BF ⁺ ₃	8
171	NiL(CO) ⁺	2
113	L ⁺	100

TABLE IV. Mass Spectrum of NiL₄ • nBF₃ (E.I. Mode).

m/e	Ion	Relative Intensity
578	NiL ₄ •BF ⁺ ₃	2
510	NiL ⁺	20
465	NiL ₃ •BF ⁺ ₃	18
397	NiL ⁺	60
352	$NiL_2 \cdot BF_3^+$	7
284	NiL ⁺	70
181	$L \cdot BF_3^+$	4
171	NiL	30
113	L ⁺	100

Ni d-electrons are being donated into the antibonding orbitals of the C-O as one goes from the L_1 to the L_3 . The increased donation of electrons by Ni into C-O antibonding orbitals causes a decrease in the C-O bond order and hence a shift to lower frequencies of the A_1 C-O stretch as one goes from L_1 to L_3 . The E mode has some splitting due to the low symmetry of L.

The complete mass spectrum of NiL₂(CO)₂ ·nBF₃ run in the E.I. mode is listed in Table III. The mass spectrum shows evidence for the existence of the species NiL₂(CO)₂ ·2BF₃ and NiL₂(CO)₂ ·BF₃. It is interesting to note that the preferred breakdown pattern of the adducts is the loss of L·BF₃ from the NiL₂(CO) ·BF₃⁺ ion to form NiL(CO)⁺ instead of the loss of CO to form NiL₂ ·BF₃⁺. There is no evidence for the loss of L when an L-BF₃ group is present also. Another mass spectrum run on an aged sample of NiL₂(CO)₂ showed the presence of the species NiL₃(CO)⁺ m/e = 425 and NiL(CO)₃⁺ m/e = 225. BF₃ addition to this mixed aged sample showed presence of NiL₃(CO)₃ ·2BF₃⁺ m/e = 561, NiL₃(CO)·BF₃ m/e = 493 and NiL(CO)₃ ·BF₃ m/e = 323. The complete mass spectrum of NiL₄ \cdot nBF₃ run in the E.I. mode is listed in Table IV. The mass spectrum shows evidence for the existence of NiL₄ \cdot BF₃. It is known from the BF₃ uptake studies that either/ or NiL₄ \cdot 4BF₃ and NiL₄ \cdot 3BF₃ may be present. The relative intensity of m/e 578 (NiL₄ \cdot BF⁺₃) is only 2%. NiL₄ \cdot 4BF⁺₃ would have an m/e = 782 and NiL₄ \cdot 3BF⁺₃ would have an m/e = 714. The high mass of these two species would cause a low volatility under the conditions that the spectrum was run and consequently were not seen as NiL₄ \cdot 4BF₃ or NiL₄ \cdot 3BF₃, but BF₃ was pumped off until NiL₄ \cdot BF₃ was present which was sufficiently volatile at 10⁻⁷ torr to be seen.

Experimental

Starting Materials

Nickel tetracarbonyl was obtained from Strem Chemical Co. in a 100 g gas cylinder pressurized with carbon monoxide to 15 psi. The Ni(CO)₄ was frozen at -178 °C (liquid in trap) and the remaining CO gas was pumped off prior to the initial use. PF₃ was obtained from Ozark-Mahoning. Commercial BF₃ and (CH₃)₂NH were obtained from Matheson and were shown by gas phase infrared to be essentially pure.

Dimethylaminodifluorophosphine

Using a modified version of Cavell's procedure [11], gaseous dimethylamine was bled into a previously evacuated 5000-ml bulb on the vacuum line to a pressure of 500 torr and was then closed off. PF_3 was added to the rest of the vacuum line at a pressure of 700 torr. The closed off stop cock to the 5000-ml bulb was opened and this over-pressure of PF₃ was then bled into the bulb containing the dimethylamine while the line pressure was maintained at a pressure of about 700 torr by the continued addition of PF₃ to the line. The PF₃ addition was periodically stopped to check for continued reaction via pressure drop and was discontinued after no pressure drop was noted after stopping the addition of PF₃ to the line. This procedure assured that all the dimethylamine had reacted and that there was an excess of PF₃ present since the vapour pressure of the product is less than 300 torr at ambient temperature [12].

The volatile product, $(CH_3)_2NPF_2$, was separated from the excess PF₃ by high vacuum, low temperature fractionation through traps cooled to -45, -78, -178 °C consecutively. The PF₃ passes through to the -178 °C trap while the $(CH_3)_2NPF_2$ stops in the -45° and -78 °C traps. The $(CH_3)_2NPF_2$ was identified and checked for purity by comparing its infrared with that of Cavell's [11].

This modification of Cavell's method has the advantage of allowing one to prepare large quantities of the dimethylaminodifluorophosphine at one time.

$Ni(Me_2NPF_2)_4$ and $Ni(Me_2NPF_2)_2(CO)_2$

These were prepared by standard literature methods [3, 4].

Isolation of $NiL_3(CO)$ and $NiL(CO)_3$

A sample of a mixture of NiL_n(CO)_{4-n} (n = 1, 2, 3) was dissolved in spectral grade hexane to make an approximately 20% (by volume) solution. The hexane solution was purged with dry nitrogen. The liquid chromatograms were carried out on a Waters Associate L.C. run at 1600 psi and at a flow rate of 1.5 ml/min. Three peaks were detected using the refractive index detector. The first corresponded to the NiL(CO)₃, the second to NiL₂(CO)₂ and the third to NiL₃(CO). The identification was made by 19 F nmr. The chromatogram peaks were well separated and the liquid chromatogram output was collected in N₂ filled polyethylene bottles as each peak was seen on the refractive index detector. This process was repeated about 8 times with all l.c. outputs corresponding to peak 1, peak 2 and peak 3 being respectively combined. The solutions were concentrated by evaporation of some of the hexane solvent by bubbling dry N_2 through the solution until the final volume was about 5 ml. Infrared spectra were made with the concentrated solutions of the samples using a 0.1 mm KBr liquid infrared cell. The spectra were recorded on a very slow scan time using an ultra fine tip pen and were calibrated using the sharp 1601.4 cm⁻¹ band of polystyrene file.

The major infrared peaks are tabulated and assigned in the Results and Discussion.

The compound NiL(CO)₃ was volatile and had significant vapor pressure at room temperature. NiL₂(CO)₂ and NiL₃(CO) had essentially no vapor pressure at room temperature and were essentially non-volatile at a 10^{-2} torr pressure at room temperature.

Reaction of $NiL_2(CO)_2$ with BF_3

A 75 ml Fischer–Porter reactor was evacuated and tared. The reactor was then opened in a dry N₂ filled glove bag. Freshly prepared NiL₂(CO)₂ (L = Me₂-NPF₂) was added, the reactor was again evacuated and it was then determined that 5.00×10^{-3} mol of NiL₂(CO)₂ had been added. The reactor and contents were then cooled to -178 °C and BF₃ (5.0×10^{-2} mol) was condensed into the reactor and allowed to interact with the NiL₂(CO)₂ for 1 hr. The reactor and contents were then allowed to warm to -128 °C and allowed to interact for an additional hour. The excess, uncomplexed BF₃ was slowly condensed off at -128 °C until no noticeable additional BF₃ pressure was given off under a static vacuum of <1 torr for a period of 15 minutes. The Fischer–Porter

reactor containing the NiL₂(CO)₂ ·nBF₃ adduct was then sealed and allowed to warm to room temperature and the mol, n, of BF₃ added was determined by mass gain: n = 1.44 at -128 °C. The above procedure was repeated at -80 °C and +2 °C in place of -128 °C and it was determined by mass gain that n = 1.2 at -80 °C and n = 1.11 at +2 °C. The BF₃ addition could be totally reversed by pumping on the adduct overnight at room temperature. The reversibility was shown by both mass balance and identical infrared spectra before the BF₃ was added and after the BF₃ was all pumped off. The various above BF₃ adducts are solids which show in the infrared the characteristic B–N stretching vibration at 610 cm⁻¹ (B–N stretch region 560–660 cm⁻¹ [1]).

The ¹⁹F nmr spectrum run neat at room temperature with a slight overpressure of BF₃ consisted of two doublets and a broad singlet, one doublet was centered at 43.7 ppm ($J_{P-F} = 1150$ cps) and the other was centered at 45.8 ppm ($J_{P-F} = 1184$ cps). The very broad singlet was at 141.8 ppm. Attempts to run low temperature nmr either neat or in CH₂Cl₂ proved unsuccessful due to the precipitation of solid adduct which made meaningful resolution impossible.

The ³¹P nmr spectrum run on this same sample showed basically two overlapping triplets, one centered at -168.5 ppm ($J_{P-F} = 1150$ cps) and the other centered at about -166.3 ppm ($J_{P-F} = 1184$ cps).

Reaction of NiL₄ with BF₃

A 75 ml Fischer-Porter reactor was evacuated and tared. The reactor was then placed in a dry N₂filled glove bag. A concentrated solution of freshly filtered (to remove any insoluble oxidation product) NiL₄ in CH_2Cl_2 was added to the reactor. The CH_2 -Cl₂ solvent was slowly pumped off on the vacuum line leaving behind the NiL₄ (2.59 \times 10⁻³ mol). The evacuated reactor and contents were then cooled to -178 °C and BF₃ (5.0 × 10⁻³ mol) was condensed into the reactor and allowed to interact with the NiL₄ for 1 hr. The reactor and contents were then allowed to warm to -100 °C and were allowed to interact for an additional hour. The excess, uncomplexed BF₃ was slowly condensed off at -100 °C until no noticeable additional BF₃ pressure was given off under a static vacuum of <1 torr for a period of 15 min. The Fischer-Porter reactor containing the $NiL_4 \cdot nBF_3$ adduct was then sealed and allowed to warm to room temperature and the mol, n, of BF₃ added were determined by mass gain: n = 1.78 at -3° and n = 1.24 at +20 °C. The BF₃ addition could be totally reversed by pumping on the adduct overnight at room temperature. The reversibility was shown by both mass balance and identical infrared spectra before the BF₃ was added and after the BF₃ was all pumped off. The n = 2.6 adduct is a solid, the n =

1.78 and n = 1.24 adducts are very viscous oils having almost the consistency of glass slightly above its softening temperature.

References

- 1 S. Fleming and R. W. Parry, Inorg. Chem., 11, 1 (1972).
- 2 J. G. Morse and K. W. Morse, Inorg. Chem., 12, 2119 (1973).
- 3 R. Schmutzler, Inorg. Chem., 3, 415 (1964).
- 4 J. F. Nixon and M. D. Sexton, J. Chem. Soc. A, 1089 (1969).

- 5 J. F. Nixon, J. Chem. Soc. A, 1136 (1967).
- 6 J. F. Nixon, M. Murray and R. Schmutzler, Z. Natur F., 25B, 110 (1970).
- 7 R. J. Clark and E. D. Brim, Inorg. Chem., 4, 651 (1965).
- 8 J. F. Nixon, Adv. Inorg. Chem. Radiochem., 13, 363 (1970).
- 9 J. F. Nixon, Endeavour, 32, 19 (1973).
- 10 R. M. Lyndon-Bell, J. F. Nixon and R. Schmutzler, J. Chem. Soc. A, 565 (1970). 11 R. G. Cavell, J. Chem. Soc., 1992 (1964).
- 12 A. Loutelier and M. Bigorgne, Bull. Soc. Chim. France 11, 3185 (1965).
- 13 J. T. Braunholtz, E. A. V. Ebsworth, F. G. Mann and N. Sheppard, J. Chem. Soc. A, 2780 (1958).